SCSI \ SAS \ SATA 硬盘做阵列的区别

发布时间:2019-09-16

浏览次数:5886

分享到:

  在深入了解新标准之前,有必要回顾一下原有的技术。长期以来,硬盘技术的进步,都着重于传输速度和容量两个方面。基本上认识电脑以来,大家就一直在使用Ultra ATA。这种延用已久的接口技术,有好些方面都显得过时而需要改进了:

  大家都知道,数据线太粗,安装不方便,严重影响机箱内空气流通,不利于机箱散热,是传统IDE接口即Ultra ATA硬盘的至命缺点。不过,IDE硬盘还有很多其它方面的局限性,大概就不是很多人都清楚了。

  主从盘相互影响:

  普遍情况下,一块主板只有两个IDE接口,每个接口可以挂两个IDE设备。但同一个接口的两个设备是共用带宽的,对速度的影响非常大。所以稍有常识的人,都会把硬盘和光驱分开两条IDE线连接到主板上
  这样,IDE有个很大的问题,就是虽然一块主板可以连接4个设备,但事实上只要超过两个,速度就大大下降。

  更大的问题是,同一条线上两个设备要严格按主/从设置才能正常运行。象图中这种西数WD400 JB,主硬盘还有两种不同设置,一条IDE线只接这块硬盘的时候按右边的设置,带从盘的时候则要按中间的设置方式。据亲身经验,如果没带从盘而按中间的方式设了,会出现五花八门百思不得其解的问题——有时可以启动,有时报告找不到硬盘,有时启动过程中报告硬盘错误之类——每次启动可能出现不同的问题。

  不支持热拔插:

  并行SATA在支持设备热插拔方面能力有限,这一点对服务器方面的应用非常重要。因为服务器通常采用RAID的方式,任何一块硬盘坏了都可以热拔插更换,而不影响数据的完整性,确保服务器任何情况下都正常开着。具有热插拔支持功能的SCSI和光纤通道占据了企业级应用的几乎全部市场,并行SATA空有价格优势而不能获得一席之地,主要原因就是它不支持热拔插。

  不够完善的错误检验技术:

  Ultra DMA引入了基于CRC的数据包出错检测,该技术是ATA-3标准的组成部分。但是,没有任何一种并行SATA标准提供命令和状态包的出错检测。尽管命令和状态包出错的范围和几率都小,但它们出错的可能性也不容忽略。

  使用过时的5伏电压:

  处理器核心从几个方面要求向低电压过渡。较低电压允许更快的信号陡变,这对提高速度、降低热耗至关重要。现在的CPU核心电压基本上都小于2伏,为保持与系统主板上其它芯片的互操作性,通常使用3.3伏的外部电压分离出来,5伏电压成为过时的标准。虽然大部分目前的 ATA/ATAPI-6标准为并行ATA设备指定的直流电压供应为3.3V (± 8%),但一些模式的接收器大于4伏,所以要使用过时的5伏电压。

  接口速度的可升级性差:

  另外,Ultra ATA是受并行总线特性的限制,带宽容易受到限制,经过多次升级,目前最高传输率也只是133M字节/秒。

  目前,服务器市场上采用的硬盘主要有三种,SATA硬盘、SCSI硬盘以及SAS硬盘,其中SATA硬盘主要应用在低端服务器领域,而SCSI和SAS硬盘则面向中高端服务器。下面我们就SATA、SCSI以及SAS分别作以下介绍:

  1、SATA硬盘 SATA(Serial Advanced Technology Attachment)是串行ATA的缩写,目前能够见到的有SATA-1和SATA-2两种标准。SATA是一种完全不同于并行ATA的新型硬盘接口类型,相对于并行ATA来说,它具有非常多的优势。 SATA硬盘与并行ATA硬盘相比,在接口上有着很大的不同 首先,SATA以连续串行的方式传送数据,一次只会传送1位数据。这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,SATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。 硬盘上的SATA接口 其次,SATA的起点更高、发展潜力更大,SATA 1.0定义的数据传输率可达150MB/s,这比并行ATA(即ATA/133)所能达到的133MB/s的最高数据传输率还高,而SATA 2.0的数据传输率将达到300MB/s,最终SATA将实现600MB/s的最高数据传输率。 插入SATA连接线缆的硬盘 SATA -2是在SATA的基础上发展起来的,其主要特征是外部传输率从SATA的1.5Gbps(150MB/sec)进一步提高到了3Gbps(300MB/sec),此外还包括NCQ(Native Command Queuing,原生命令队列)、端口多路器(Port Multiplier)、交错启动(Staggered Spin-up)等一系列的技术特征。单纯的外部传输率达到3Gbps并不是真正的SATA -2. 主板上的SATA接口 SATA -2的关键技术就是3Gbps的外部传输率和NCQ技术。

  NCQ技术可以对硬盘的指令执行顺序进行优化,避免像传统硬盘那样机械地按照接收指令的先后顺序移动磁头读写硬盘的不同位置,与此相反,它会在接收到命令之后对其进行排序,排序后的磁头将以高效率的顺序进行寻址,从而避免磁头反复移动带来的损耗,延长硬盘寿命。另外并非所有的SATA硬盘都可以使用NCQ技术,除了硬盘本身要支持 NCQ之外,也要求主板芯片组的SATA控制器支持NCQ.此外,NCQ技术不支持FAT文件系统,只支持NTFS文件系统。 另外,SATA还具备热插拨功能,利用这一功能可以更加方便的组建磁盘阵列。串口的数据线由于只采用了四针结构,因此比并口的安装更加便捷,更有利于缩减机箱内的线缆,有利于散热。

  2、SCSI硬盘 SCSI(Small Computer System Interface)是一种专门为小型计算机系统设计的存储单元接口模式,可以对计算机中的多个设备进行动态分工操作,对于系统同时要求的多个任务可以灵活机动的适当分配,动态完成。 硬盘上的SCSI接口 SCSI规范发展到今天,已经是第六代技术了,从刚创建时候的SCSI(8bit)、Wide SCSI(8bit)、Ultra Wide SCSI(8bit/16bit)、Ultra Wide SCSI 2(16bit)、Ultra 160 SCSI(16bit)到今天的Ultra 320 SCSI,速度从1.2MB/s到现在的320MB/s有了质的飞跃。目前主流的SCSI硬盘都采用了Ultra 320 SCSI接口,能提供320MB/s的接口传输速度。

  由于Ultra 320 SCSI是目前SCSI硬盘的主流接口,因此下面为大家详细介绍一下Ultra 320 SCSI. 主板上的80pin SCSI接口,为孔状插槽 Ultra320 SCSI,也称为Ultra4 SCSI LVD,是比较新型的SCSI接口标准。Ultra320 SCSI是在Ultra160 SCSI的基础之上发展起来的,Ultra160 SCSI的优势得以继续发扬,Ultra160 SCSI的3项关键技术,即双转换时钟控制、循环冗余码校验和域名确认,都得到保留。以前的SCSI接口标准中,SCSI接口支持两种传输模式:异步和同步。Ultra320 SCSI引入了调步传输模式,在这种传输模式中,简化了数据时钟逻辑,使Ultra320 SCSI的高传输速度成为可能。Ultra320 SCSI传输速率可以达到320MB/s. 扩展卡上的SCSI接口 Ultra320 SCSI主要具有以下特点:

  1)双倍速率数据传输,数据传输速率比Ultra160 SCSI提高了一倍;

  2)分组化的SCSI,支持分组协议;

  3)快速仲裁和选择,大大提高了总线的利用率;

  4)读写数据流,把数据传输的开销降到最低;

  5)流控制,提高了总线的利用率。

  SCSI硬盘也有专门支持热拔插技术的SCA2接口(80-pin),与SCSI背板配合使用,就可以轻松实现硬盘的热拔插。目前在工作组和部门级服务器中,热插拔功能几乎是必备的。

  3、SAS硬盘 SAS 是Serial Attached SCSI的缩写,即串行连接SCSI.2001年11月26日,Compaq、IBM、LSI逻辑、Maxtor和Seagate联合宣布成立SAS工作组,其目标是定义一个新的串行点对点的企业级存储设备接口。 SAS工作原理图 SAS是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,提供与串行ATA (Serial ATA,缩写为SATA)硬盘的兼容性。 SAS硬盘上的SAS接口及其控制芯片 SAS技术引入了SAS扩展器,使SAS系统可以连接更多的设备,其中每个扩展器允许连接多个端口,每个端口可以连接SAS设备、主机或其他SAS扩展器。为保护用户投资,SAS规范也兼容了SATA,这使得SAS的背板可以兼容SAS和SATA两类硬盘, 对用户来说,使用不同类型的硬盘时不需要再重新投资。 主板上的SAS接口 串行SCSI是点到点的结构,可以建立磁盘到控制器的直接连接。它具有以下特点:

  1)更好的性能:点到点的技术减少了地址冲突以及菊花链连结的减速;可以为每个设备提供专用的信号通路来保证其最大的带宽;全双工方式下的数据操作保证了最有效的数据吞吐量。

  2)简便的线缆连结:采用了更细的电缆,搭配更小的连接器。
  
  3)更好的扩展性:可以同时连结更多的磁盘设备,最多可连接16384个磁盘设备。 SAS硬盘与相同转速的SCSI硬盘相比有相同或者更好的性能。串行接口减少了线缆的尺寸,允许更快的传输速度。目前,SAS硬盘传输数据可以达到3.0Gbit/sec,其SAS扩展器多为12端口,未来不久,第二代和第三代的SAS界面将提供6-12Gbps的数据带宽(支持HostRAID),并且会有28或36端口的SAS扩展器出现以适应不同的应用需求。 通过上面的介绍,我们可以清楚的看到SCSI/ SAS硬盘的可靠性要比SATA硬盘高出很多。不过,大家不要忘记SATA硬盘主要是应用于PC机上面的,SATA硬盘的工作强度和服务器SCSI/SAS硬盘的工作强度是不可比拟的。而且由于SCSI/SAS具有CPU占用率低,多任务并发操作效率高,连接设备多,连接距离长等优点。因此,对于服务器硬盘可靠性、扩展性以及性能要求较高的企业,建议采用SCSI/SAS硬盘,并采用最新的Ultra320 SCSI控制器。 不过SCSI/SAS硬盘的价格较贵,同样容量的SCSI/SAS硬盘价格会比SATA硬盘贵80%以上。因此,对于低端的小型服务器应用来说,可以采用最新的SATA硬盘和控制器。SATA硬盘也具备热插拔能力,并且可以在接口上具备很好的可伸缩性,如在机架式服务器中使用SCSI-SATA、FC-SATA转换接口以及SATA端口位增器,使其具有比SCSI/SAS更好的灵活性。

 

  还有一点需要注意,我们在DIY服务器时往往需要在第一时间将多个硬盘做成RAID,而c做RAID最好是用多块同一品牌同一型号同一容量的硬盘来做。所以我们在选择服务器硬盘时,如果要购买多块硬盘组成RAID,最好能够选择同一品牌同一型号同一容量的硬盘
 

  SATA比IDE优越在哪些地方?

  SATA不再使用过时的并行总线接口,转用串行总线,整个风格完全改变。

  SATA与原来的IDE相比有很多优越性,最明显的就是数据线从80 pin变成了7 pin,而且IDE线的长度不能超过0.4米,而SATA线可以长达1米,安装更方便,利于机箱散热。除此之外,它还有很多优点:

  一对一连接,没有主从盘的烦恼:

  每个设备都直接与主板相连,独享150M字节/秒带宽,设备间的速度不会互相影响。

  支持热拔插:

  热拔插对于普通家庭用户来说可能作用不大,但对于服务器却是至关重要。事实上,SATA在低端服务器应用上取得的成功,远比在普通家庭应用中的影响力大。

  数据传输更加可靠:

  SATA提高了错误检查的能力,除了对CRC对数据检错之外,还会对命令和状态包进行检错,因此和并行ATA相比提高了接入的整体精确度,使串行ATA在企业RAID和外部存储应用中具有更大的吸引力。

  低电压信号:

  SATA的信号电压最高只有0.5伏,低电压一方面能更好地适应新平台强调3.3伏的电源趋势,另一方面有利于速度的提高。

  带宽升级潜力大:

  SATA不依赖于系统总线的带宽,而是内置时钟。刚推出的这一代SATA内置1500MHz时钟,可以达到150M字节/秒的接口带宽。由于不再依赖系统总线频率,每一代SATA升级带宽的增加都是成倍的:下一代300M字节/秒,再下一代可以达到600M字节/秒。

  SATA仍然存在的几点不足,在国内,现在买IDE的人恐怕比买SATA的人多很多。主要有三个方面的原因:

  首先,SATA的诸多先进性总体上对个人电脑用户意义不是太大,它最大的意义的反而是适应了入门级企业应用的需要。

  其次,nForce4、915之前的那些主板使用SATA硬盘,在安装操作系统的时候需要用到软盘,就象SCSI硬盘那样,增添了用户的麻烦。

  另外,国内用户的电脑配置相对落后,很多人都是旧电脑升级大容量硬盘,稍老点的主板还不支持SATA硬盘。

  所以,SATA最大的成功在于吸引了很多低端入门级服务器的用户。但在企业级应用方面,它又仍然在很多方面有待改进:


  单线程的机械底盘:
  SATA毕竟只是ATA,它的机械底盘是为8x5线程设计的,而SCSI的机械底盘是24x7多线程设计,能更好地满足服务器多任务的需要。所以SATA虽然在单任务的测试中不比SCSI差,但面对大数据吞吐量的服务器,还是有差距的。除了速度之外,面对多任务数据读取,硬盘磁头频繁地来回摆动,使硬盘过热是SATA最大的问题。

  形同虚设的热拔插功能:
  在实际应用中,RAID硬盘阵列是由多个硬盘组成的,必须知道具体哪一块硬盘坏了,热拔插更换才有意义。SATA硬盘虽然可以热拔插,但SATA组成的阵列在某块硬盘损坏的时候,不能象SCSI、FC和SAS那样,具有SAF-TE机制用指示灯显示,知道具体坏的是哪一块,热拔插替换的时候,如果取下的是好硬盘,就容易使数据出错。所以在实际应用中,SATA的热拔插功能有点形同虚设的味道。

  速度慢:
  SATA相对于SCSI和FC速度慢,主要原因是机械底盘不同,不适应服务器应用程序大量非线性的读取请求。所以SATA硬盘用来做视频下载服务器还不错,用在网上交易平台则力不从心。

  SATA 1.0控制器的传输速度效率不高,虽然标称具有150MB/s的峰值速度,事实上最快的SATA硬盘速度也只有60MB/s。

  整个解决方案价格不同:
  虽然SATA硬盘相对于SCSI硬盘来说很便宜,但整个的SATA方案并不便宜。主要原因是SATA 1.0控制器的每个接口只能连接一个硬盘,8个硬盘组成的阵列需要8个接口,把每个接口300多元的花费算进去,就不便宜了。

  SATA II与准SATA II:

  很多人到现在都还不是太清楚SATA与Ultra ATA相比有什么区别与好处,这也难怪。因为连Intel刚推出SATA的时候,也没想到这个为个人用户而改进的方案,结果会在入门级服务器和工作站等企业应用的前前景更为广大——也正因为这样,2004年才专门成立了SATA IO(SATA国际组织)。前面那么多介绍,是结合现实情况与SATA官方白皮书整理的,从中已经可以发现,说到SATA优缺点,更多的是从企业应用而不是个人与家庭应用的角度考虑的。

  现在经常听到“NCQ硬盘”和“SATA II硬盘”这两个名词,它们是SATA向下一代——SATA II发展的两个不同阶段的产品:

  第一阶段是在SATA的基础上加入NCQ原生指令排序、存储设备管理(Enclosure Management)、底板互连、数据分散/集中这四项新特性。
 
  第二阶段是在第一阶段的基出上作进一步改进,加入了双宿主主动式故障替换、与多个硬盘高效连接、3.0Gb(即300MB/s)接口带宽等特性。
  
  “NCQ硬盘”的改进:不仅仅是NCQ这么简单:
  
  由于SATA II的第一阶段几项改进中,NCQ原生指令排序技术对个人用户意义比较大,所以也只有这一项技术比较多人了解。其实SATA II第一阶段加入的技术包括如下几项:

  NCQ原生指令排序

  Native command queuing:什么是NCQ呢?这是SCSI早就使用的一种技术,只是最近才应用于SATA硬盘。

  传统台式机硬盘都用线性形式处理请求,这种方式潜在很不好的方面,要理解其中原理,必须对硬盘物理结构有个基本了解。硬盘里面是圆盘状的,很象CD光盘。每一个圆盘由许多同心圆划分为一条条磁道,磁道又分出扇区。每个圆盘由一个或多个磁头负责读取。如果数据分布在同一磁道,寻找数据的速度是最快的。在不同磁道之间移动则消耗很多时间。假设要读取三块数据,其中一块在圆盘最外边的磁道上,一块在圆盘最里面的磁道上,还有一块在圆盘最外边的磁道上。传统的硬盘,会依次先读取圆盘最外面的数据,然后读取最里面的数据,最后再回头读取最外面的数据。这样一来,磁头移来移动消耗的寻道时间多,效率就低了。如果把磁头移动减到最少,寻道时间就会相应减少。这就是NCQ的目的所在——NCQ可以重新编排指令,不让磁头从外移到内再移到外,而是在移向圆盘内圈之前就读取外圈的两块数据。

  现在大家应该明白了,CPU的速度对硬盘性能影响微乎其微,但NCQ技术则可以明显改善硬盘性能,特别是对前面提到的SATA多线程性能差、容易磁头频繁来回摆动、硬盘容易过热这些方面有很大改善。

  机架管理(Enclosure Management)
  前面提到SATA的热拔插技术,由于阵列中有一块硬盘出现故障的时候,不知道具体坏的是哪一块而形同虚设。SATA II第一阶段即拥有NCQ技术的SATA硬盘,加入了机架管理技术,正是用来解决这一问题的。

  背板互连(Backplane Interconnect)
  SATA用于数据发送的导线数量很小,因而出现了为外部RAID使用而部署的底板。

  该底板是一块物理线路板,通常集成到机架的后面板上,上面嵌入了通过刻在线路板上的导线连接到中心控制器插件的多个设备接头。值得注意的是,中心控制器与主机的接口可以按任意一种协议来设计,可以是SCSI、光纤通道或iSCSI。底板的使用可使设备咬住接头并紧密结合。

  当然,受到FR4材质信号衰减的限制,中心控制器和SATA设备接头之间蚀刻线路的最大长度必须限制在18英寸以内。虽然这种限制表面上局限了底板端子和SATA机架的设计,而事实上,标准机架为19英寸宽,因此,在一个1U到3U的机架内,为SATA而蚀刻的最大导线长度足以从一个位置适中的中心控制器连接到所有设备接头。

  SATA II不等于300MB/s :

  首先,是接口带宽从原来的150MB/s扩展到了300MB/s。但SATA II不能与300MB/s划等号,因为它包含了SATA II第一阶段的NCQ等技术,以及更多的其它技术:

  其次,SATA II可以通过Port Multiplier,让每一个SATA接口可以连接4-8个硬盘,即主板有4个SATA接口,可以连接最多32个硬盘。

  另外,还有一个非常有趣的技术,叫Dual host active fail over。它可以通过Port Selector接口选择器,让两台主机同时接一个硬盘。这样,当一台主机出现故障的时候,另一台备用机可以接管尚为完好的硬盘阵列和数据,这就确保服务器不管在某块硬盘损坏,或是某坏CPU之类的其它配件损坏的情况下,仍能正常运作。

 

  最后,相信大家对IDE、SATA、NCQ、SATA II已经有了比较整体的认识。或许很多关于服务器方面的技术还不太明白,其实这没关系,最重要的是获得这样一个概念:SATA、SATA II的改进,大多数不是为个人电脑用户而设的。

  SATA对个人电脑用户真正有意义的地方,也就是让机箱散热更加良好。但与此同时,如果你的主板不支持SATA II,在获得这样一个好处的同时,安装windows操作系统会比较麻烦——需要插入SATA的驱动软盘。所以IDE用户千万别以为SATA更先进,改用更先进的SATA硬盘会有多大的性能提升。

  使用支持NCQ技术的硬盘,对喜欢同时运行很多个程序的用户可能会有速度上的改进,而且由于磁头比较少来回摆动,硬盘会比较长寿,温度也会比较低。但前面没有提到的一个必要前提是,必须主板和硬盘都支持NCQ技术才起作用。

  至于SATA II,唯一对个人电脑用户有意义的就是300MB/s的带宽——当然,SATA II全都是支持NCQ的。不过千万别指望带宽比原来增加了一倍,就可以获得接近于SATA两倍的速度,因为目前硬盘的速度主要是受硬盘内部数据传输率的限制,而不在于接口带宽,接口带宽的增加对个人用户带来的速度改善,是微乎其微的。同样,SATA II的好处——支持NCQ和300MB/s的带宽,必须要主板支持,在只支持SATA I的主板上使用SATA II硬盘,就连“微乎其微”的改善也不会有。

  总体来说,SATA、NCQ以至完整的SATA II,对一般个人电脑用户的意义不是非常大,它们最大的意义在于为企业应用提供了SCSI、FC之外的廉价存储解决方案——当然如果几种硬盘的价格相差很小的话,尽可能选最先进的SATA II是没错的。如果担心新技术会不成熟存在某些未知缺陷,继续选择SATA I硬盘甚至是IDE硬盘,也是相当不错的方案。

 

  许多专家说,市场对RAID技术的需求已经减少。擦除编码和固态硬盘提供了可靠(相对也更贵一些)的替代方案,而且随着存储容量的增加,RAID阵列错误的几率也会增加。尽管如此,但大型数据的存储供应商仍然在其存储阵列中支持RAID,仅有的固态硬盘的存储量还是太低,远远满足不了需求,所以目前来说RAID卡的地位还是不可取代的。想了解更多存储产品需要合作与咨询搭建方案请联系官网上的在线客服,嘉华众力自2000年成立以来一直在网络存储、传输这方面积累、沉淀;经过多年发展与全新的品牌定位,( CEACENT )嘉华众力品牌已成为国内外极具实力的数据通讯产品及方案提供商。,请关注嘉华众力官网:www.unicaca.com
 

15012962335